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Supplementary Material 1: The Single Sample Count (SSC) method 

The SSC (Petróczi et al., 2011) is a variation of a fuzzy response model known as the 

Unmatched Count (Dalton et al., 1994). In the Unmatched Count model, the sensitive question or 

statement is embedded in a certain number of unrelated innocuous questions/statements and 

respondents are instructed not to answer each question/statement independently but to only indicate 

the total number of affirmative answers. Participants are allocated to one of two groups where only one 

group receives the sensitive question. The control group receives the innocuous questions only. As 

participants are randomly allocated to either the experimental or the control group, the two groups are 

similar. Prevalence of the sensitive issue is then calculated from the difference in the number of 

affirmative answers between the two groups. The control group serves no other purpose than the 

baseline distribution for the innocuous questions resulting in considerable ‘waste’ of data and potential 

resentment from participants as half the sample only responds to unrelated questions. 

The SSC addresses this issue by using innocuous questions with a known population prevalence 

(e.g. birthdays) instead of a control group, and embed the sensitive question/statement in a number of 

innocuous questions (see Table 2). Mathematically, this approach can be described as k innocuous 

questions with B(k*n, 0.5) for the baseline estimation, where B is the distribution, k is the number of 

the innocuous questions in the model and n is the sample size. In contrast to previous models such as 

the Unmatched Count model (Dalton et al., 1994), SSC eliminates the need for a control group and 

calculates the baseline from personal data with known probability (e.g. birthdays) instead.  

An empirical dataset generated via the SSC method contains n individual responses where each 

question in the question set of a number of innocuous questions and one target question is answered 

with ‘yes’ or ‘no’ (true/false in case of a statement format) but only the sum of the answers, which 

ranges between zero and k+1, is recorded. The prevalence rate for the sample is estimated as the 

difference between the observed average of affirmative responses across the SSC model questions and 

the expected sum from the k innocuous questions, where d is the unknown prevalence, n is the sample 

size and k is the number of innocuous questions with 50/50 probability (Eq 1). The 95% confidence 

interval is calculated using normal approximation, where d is the estimated proportion of ‘yes’ answers 

given to the sensitive target question, n is the sample size and Z(0.975) is 1.96 (Eq 2). 
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(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑦𝑒𝑠) ± 𝑍(0.975) × √(𝑛 × (1 + 𝑑 × (1 − 𝑑)))  (Eq 2) 

Take, for example, an SSC model with three innocuous questions with 0.5 probability each and 

one sensitive target question about doping. Study participants respond with the total number of 

statements that are true for them (0, 1, 2, 3, 4 or 5), which can be summed for the entire sample. This 

observed number of ‘affirmative’ answers is derived from the sum of two random variables: innocuous 

items such as birthdays or some random numbers, and the sensitive target question with distribution of 

B(k*n, 0.5) and B(n, d) respectively, where d is the population distribution of doping use and n is the 

number of respondents in the sample. The distribution of the sum of d and k is unknown, but we can 



 

 

use the normal approximation for a binomial distribution derived as mean = n*p and variance = n*p*(1-

p), where n and p are the distribution of the two binomial parameters (Petróczi et al., 2011). Illustrating 

how the SSC works with a numerical example, let us take 1,000 completed surveys where the sum of 

‘yes’ answers is 1,750, giving a mean of 1.75 for the entire sample. We know that the probability from 

the four innocuous question is 1.5 (= 3 * 0.5). We are interested in the unknown probability of the 

sensitive target question (e.g. doping use) which we can calculate by taking the difference between the 

observed mean of ‘yes’ answers (1.75) and the expected mean from the innocuous questions with 0.5 

probability (1.5). The difference is 0.25 for the sensitive target question about doping which is 

translated as 25% estimated prevalence for admitted doping use. 

We used this illustrative example for its simplicity, but the weakness of this specific model 

setup is a potential exposure in situations where the respondents’ have all affirmative answers on the 

innocuous questions. With a ‘yes’ on the sensitive target question, one must respond honestly with the 

maximum of affirmative answers (i.e. ‘5 yes’ answers) which removes the protection for the individual. 

Although the likelihood for exposure is relatively low, for example 1/16 with a 5-question model, 

avoiding any exposure is the preferred option. To avoid potential exposure, respondents must be 

instructed to select a given number of yes answers (i.e. zero) or select any number of yes answers 

between and including zero to four if their true answer is five. Through a series of simulations, we have 

shown that from the numerical point of view, there is no difference between the ‘select zero’ and the 

‘select any number’ variations (Petróczi et al., 2011). For practical reasons, we opted for the ‘select 

zero’ variation, presented as a shared button labelled ‘0 or 5’. The ‘zero or 5’ model set-up, on one 

hand rendered the simple equation presented in Petróczi et al. (2011) unsuitable. On the other hand, it 

offered an option to check for evidence of noncompliance. The suitable alternative approaches are 

described below in the ‘data analysis’ section. 

With the ‘0 or 5’ response option, the simple calculation presented in Petróczi et al. (2011) is 

no longer suitable. Instead, we used an alternative method with a Maximum Likelihood Estimator 

(MLE). The method was developed with doping prevalence data in 2012 but owing to the embargo on 

publication, we validated the method with an independent dataset in 2013 and have made further 

improvements since (Nepusz et al., 2014). Detecting noncompliance in the SSC with the ‘0 or 5’ 

response option is straightforward. Here, p of 0 is 0.0625 * (1-d), and the p of 5 is 0.0625 * d. Hence, 

p of ‘0 or 5’ is irrespective of d, thus p of ‘0 or 5’ is 1/16 (6.25%). The significant difference between 

the observed p and the expected p = 0.0625 is the evidence for noncompliance. Owing to the model 

design, we have more data to work with (which means sufficient degrees of freedom, df) to take 

noncompliance into consideration, and to do so without experimental manipulation The advantage of 

the SSC with a “0 and 5 response” with MLE is that the MLE estimates the probability of the target 

attribute (e.g. admitted doping use) and the probability of noncompliance, then attributes the 

noncompliance rate to the proportion of positive (doping) and negative (no doping) cases according to 

the estimated prevalence rate. 

To take ‘noncompliance’ into account, we need to make assumptions about how this may 

happen and what the relationship is between noncompliance with the survey instructions and being 

guilty of doping. The following hypotheses outline six theoretical possibilities with the null hypothesis 

representing the scenario where there is no doping use (d = 0) and everyone is compliant with the 

survey (c = 0). Hypothesis 1 describes the case where doping prevalence is d and everyone responds 

honestly (c = 0). In Hypothesis 2, doping prevalence is d and some respondents are noncompliant by 

choosing a random answer. In this hypothesis, each respondent may give an honest answer with 

probability 1-c or decide to give a completely random answer with probability c.  Hypothesis 3 assumed 

that doping prevalence is d and some respondents choose ‘0 or 5’ with probability c. In Hypothesis 4, 

doping prevalence is d and respondents select randomly from the lower half (‘0 or 5’, ‘1’ or ‘2’) with 

probability c. Hypothesis 5 presents an unlikely scenario where doping prevalence is d and some 

respondents selects ‘4’ or ‘5’ with probability c. Hypothesis 6 defines a case where doping prevalence 



 

 

is d and some respondents select the option that is one affirmative answer less than the truth. This 

scenario is equivalent to answering only the four innocuous questions and not answering the target 

question. Nepusz et al. (2014) note that this hypothesis can be equivalent to H1. In practice, it means 

that the maximum log-likelihood for H6 never exceeds those from the other Hs, whereas the fit will be 

higher because of the increased complexity. Consequently, this model - although intuitively attractive 

- cannot mathematically outperform the other hypotheses. 

The initial MLE model (Nepusz et al, 2014) assumed that the target attribute and 

noncompliance are statistically independent. This assumption means that noncompliance can occur 

with equal probability among those with the target attribute (e.g. doping users) and those without the 

target attribute (e.g. clean athletes). Although dependent models can also be tested, we have shown in 

Nepusz et al. (2014) that there is always a solution where dependent and independent models fit equally 

well. Given these limitations, the recommended use of the noncompliance detection is to check for and 

estimate the magnitude of noncompliance. Independent from the SSC development (Petróczi et al., 

2011; Nepusz et al., 2014), an alternative data processing method for SSC data has been proposed 

(Groenitz, 2014). This method utilises expectation maximization (EM) algorithm instead of maximum 

likelihood (Nepusz et al., 2014). The EM method has the advantage of being faster and less likely to 

produce estimates beyond the 0 and 1 spectrum (thus less likely to produce negative d values). We 

tested both methods on the SSC data and they returned identical results up to three decimals (results 

not shown). 

Regarding the SSC model design, a high number of innocuous questions offers a high level of 

protection for the respondents. However, a high number of innocuous questions increases the 

confidence interval (which translates to a less precise estimate), and it is often practically unfeasible 

due to the limited permutations one can generate from birthdays, and the increase in cognitive load. 

Therefore, on balance, it is recommended that the SSC model uses three to five innocuous 

questions/statements. 


